Çernobil Reaktör Kazası

Çernobil reaktör kazası, bir deney sırasında meydana gelen 20. yüzyılın ilk büyük nükleer kazasıdır. Ukrayna’nın Kiev iline bağlı Çernobil kentindeki Nükleer Güç Reaktörünün 4. ünitesinde 26 Nisan 1986 günü erken saatlerde meydana gelen nükleer kaza sonrasında atmosfere büyük miktarda fisyon ürünleri salındığı 30 Nisan 1986 günü tüm dünya tarafından öğrenildi.


KAZANIN SEBEBİ



1986’da Ukrayna’daki (O dönemde SSCB’nin bir parçasıydı) Kiev’in 140 km kuzeyinde bulunan Çernobil Nükleer Santralı’nda gerçekleşen kaza, her biri 1.000 Megawatt (MW) gücünde olan dört reaktörüni hatalı tasarımının yanı sıra reaktörlerden birinde deney yapmak için güvenlik sisteminin devre dışı bırakılıp peşpeşe hatalar meydana gelmesi nedeniyle oldu.



Çernobil 4. reaktörün felaketten sonraki durumu



Deneyin yapılacağı 25 Nisan 1986 günü önce reaktörün gücü yarıya düşürüldü, ardından da acil soğutma sistemi ile deney sırasında reaktörün kapanmasını önlemek için tehlike anında çalışmaya başlayan güvenlik sistemi devre dışı bırakıldı. 26 Nisan günü saat 00:23’i biraz geçe teknisyenler deneyin son hazırlıklarını tamamlamak üzere ek su pompalarını çalıştırdılar. Bunun sonucunda gücünün yüzde 7’siyle çalışmakta olan reaktörde buhar basıncı düştü ve buhar ayırma tamburlarındaki su düzeyi güvenlik sınırının altına indi. Normal olarak bu durumda reaktörün güvenlik sistemine ulaşması gereken sinyaller de teknisyenler tarafından engellendi. Su düzeyini yükseltmek için buhar sistemine koşulların oluştuğuna karar verildi. Büyük patlama ise saat 01:23 meydana geldi.



Deneyin amacı; reaktörün çalışması aniden durdurulduğunda buhar türbinlerinin daha ne kadar süreyle çalışmayı sürdüreceğini ve böylece ne kadar süre acil güvenlik sistemine güç sağlayabileceğini öğrenmekti. Geriye kalan öteki acil güvenlik sinyali bağlantılarını da kestikten sonra türbinlere giden buhar akışı durduruldu. Bunun sonucunda dolaşım pompaları ve reaktörün soğutma sistemi yavaşladı. Yakıt kanallarında ani bir ısı yükselmesi görüldü ve yapısal özellikleri nedeniyle reaktör tümüyle denetimden çıkmış oldu. Tehlikeyi fark eden teknisyenler, reaktörün durdurulmasını sağlamak amacıyla bütün denetim çubuklarını derhal sisteme sokmaya karar verdiler; ama aşırı derecede ısınmış bulunan reaktörlerde saat 01:26’te, yani deneye başlanmasından bir dakika sonra iki patlama oldu. Bu patlamanın ayrıntıları tam olarak bilinmemekle birlikte denetim dışı bir çekirdek tepkimesinin gerçekleşmiş olduğu anlaşılmaktadır. Üç saniye içinde reaktörün gücü %7’den %50’ye fırladı. Yakıt parçacıklarının soğutma suyuyla karşılaşması, suyun bir anda buhara dönüşmesine yol açtı. Oluşan aşırı buhar basıncı reaktörün ve santral binasının tepesini uçurdu. Reaktördeki zirkonyum ve grafitin yüksek sıcaklıktaki buharla karşılaşması sonucu oluşan hidrojen yanarak bütün santralı alevler içinde bıraktı.

26 Nisan 1986 saat 01.23’te 4 numaralı reaktör çekirdeğinde patlamalara neden olan katastrofik güç artışı yaşadı. Bu patlamalar, atmosfere çok miktarda radyoaktif yakıtın ve hammaddenin yayılmasına ve kolayca tutşabilen grafit moderatörünün tutuşmasına neden oldu. Reaktör herhangi bir sağlam muhafaza kazanı ile kaplanmadığı için yanan grafite moderatörü dumanla taşınan radyoaktif parçacıkların yayılımını arttırdı. Normal kapama işleminde meydana gelen kaza olası acil bir durumda devreye giren soğutma özelliği güvenliğinin planlanmış bir testi sırasında oluştu.



Yapılmaya Çalışılan Deney;



Nükleer güç reaktörleri, aktif olarak güç üretmediğinde bile radyoaktif maddelerin bozulma ısısını gidermek için genellikle soğutucu akışı tarafından sağlanan soğutma işlemine ihtiyaç duyar. Basınçlı su reaktörleri, atık ısıyı çıkarmak için yüksek basınçlı su akışını kullanır. Kaza durumundaki bir reaktörün acil olarak durdurulmasından sonra, çekirdek hala başlangıçta tesisin toplam ısı üretiminin yaklaşık olarak % 7’ si kadar ciddi miktarda bir artık ısı üretir. Bu artık ısı soğutucu sistemleri tarafından çıkarılmazsa, ısı çekirdeğin zarar görmesine neden olabilir. Çernobilde patlayan reaktör, yaklaşık olarak 1600 ayrı yakıt kanalından oluşuyordu ve her operasyonel kanal saatte 28 ton’luk (7400galon) su akışına ihtiyaç duyuyordu. Enerji hatları şebekesinin çökmesi durumunda harici gücün, tesisin soğutucu su pompalarını acilen çalıştırmak için uygun olmayacağı yönünde endişeler vardı.

Çernobil reaktörlerinin 3 tane yedek dizel jeneratörü vardı. Her jeneratör 15 saniye içinde devreye girebiliyordu, fakat tam hıza ulaşması ve ana soğutucu su pompalarından bir tanesini çalıştırmak için gerekli olan 5.5 MW ‘lik kapasiteye ulaşması 60-75 saniye alıyordu. Bu bir dakikalık güç aralığının kabul edilemez olduğu düşünülüyordu ve buhar tirbünü rotasyonel enerjisi (ya da açısal momentum)ve artık buhar basıncının (tirbün vanaları kapalı), acil durum dizel jeneratörleri yeterli dönme hızına ve voltaja ulaşana kadar, ana soğutucu su pompalarını çalıştırabilecek elektiriği üretmek için kullanılabileceği öne sürülüyordu. Teorik olarak, analizler, bu artık momentumun ve buhar basıncının, acil durum jeneratörlerinden gelen harici enerjinin başlangıcındaki kesinti ve yeterli tam güce ulaşması arasında köprü olabilecek gücü 45 saniyeliğine sağlayabilecek potansiyele sahip olduğunu gösteriyordu.

Bu yeterliliğin hala deneysel olarak doğrulanması gerekiyordu ve önceki testler hep başarısızlıkla sonuçlanmıştı. 1982’ de gerçekleştirilen ilk test, tirbün jeneratörünün uyarım voltajının yetersiz kaldığını; türbinin aniden kapanmasından sonra gerekli manyetik alanı devam ettiremediğini, gösterdi. Sistem 1984’ te modifiye edilerek tekrarlandı, fakat sonuç yine başarısız oldu. 1985’ te testler üçüncü sefer yapıldı ve yine olumsuz sonuçlarla bitti. Test prosedürü 1986 da tekrar edilecekti, ve bu testin 4 numaralı reaktörün bakım için kapatılması esnasında yapılması planlandı. Test, reaktörün elektrik kaynaklarının sekanslarını cereyan verme üzerine odaklandı. Test prosedürü, bir acil durum kapatmasıyla başlamış oldu. Reaktörün güvenliği üzerinde zararlı etkisi tahmin edilmiyordu, bu yüzden test programı reaktörün tasarım şefi ya da bilimsel idarecisi ile koordineli olarak yapılmadı. Bunun yerine sadece tesis direktörü tarafından onaylandı. Test parametrelerine göre deneyin başlangıcında reaktörün ısı üretimi 700 MW’ nin altında olmamalıydı.

Test koşulları planlandığı gibi olsaydı, test hemen hemen başarıyla gerçekleşebilirdi; nihai felaket, onay verilen test prosedürüne aykırı olarak deney başlar başlamaz reaktör verimini arttırmaya zorlamaktan kaynaklandı. Çernobil santrali, 2 yıl, ilk 60-75 saniye boyunca toplam elektrik gücü kaybını karşılama kapasitesi olmadan çalıştı, ve bu yüzden önemli bir güvenlik özelliğinden yoksundu. İstasyon yöneticileri büyük olasılıkla ilk fırsatta bunu düzeltmek istedi, ki bu ciddi sorunlar meydana geldiğinde bile neden deneye devam ettiklerini ve gerekli izni neden Sovyet nükleer bakım düzenleyicisinden almadıklarını açıklar(üstelik 4 no lu reaktörde bir temsilci bulunmasına rağmen.

Deney prosedürünün amaçları: 1- Reaktör 700MW-800MW arasında daha düşük bir güç seviyesinde çalışıyor olacaktı. 2- Buhar tirbünü jeneratörü tam hızıyla çalışıyor olacaktı. 3- Bu koşullar sağlandığında, türbin jeneratörünün buhar desteği kapatılacaktı. 4- Türbin jeneratörü performansının, soğutma pompalarına otomatik olarak güç sağlayan ve çalıştıran acil durum dizel jeneratörleri sıralanana kadar, soğutma pompaları için gerekli köprü gücü sağlayıp sağlayamayacağı belirlenecekti. 5- Acil durum jeneratörleri normal yeterli hıza ve voltaja ulaştıktan sonra, türbin jeneratöre serbest bırakılacaktı.


Kaza öncesindeki Koşullar;


Testin uygulanmasını sağlayan koşullar 25 Nisan 1986 günü gündüz vardiyasından önce oluşturuldu. Gündüz vardiyasındaki işçiler önceden uyarıldı ve bu işçiler oluşturulan prosedürlere aşinaydı. Elektrik mühendislerinden oluşan özel bir ekip yeni voltaj düzenleme sistemini test etmek üzere oradaydı. Planlandığı gibi gündüz vardiyasının işe başlamasıyla 01:06 25 Nisanda güç ünitesinin randımanı kademeleri olarak azaltılmaya başlandı ve güç seviyesi nominal 3200 MW ısı seviyesinin % 50 sine düşürüldü.

Bu noktada bir diğer bölgesel güç istasyonu beklenmedik bir şekilde devre dışı kaldı ve Kiev elektrik şebekesi denetçisi akşamları oluşan yoğun elektrik talebini karşılayacak güce ihtiaç duyulduğu için çernobilde daha fazla güç azaltılmasının ertelenmesini talep etti. Çernobil santrali yöneticisi testin ertelenmesini kabul etti. Saat 23:04 te kiev elektrik şebekesi denetçisi reaktörün kapatılma işlemine devam edilmesi için izin verdi. Bu gecikmenin bazı ciddi sonuçları vardı; gündüz vardiyası geçeli çok olmuştu ve akşam vardıyası da çıkmaya hazırlanıyordu, ve gece vardıyası da işin yapılacağı gece yarısına kadar nöbeti devralmayabilirdi.

Plana göre test gündüz vardiyasında bitirilmeliydi ve gece vardiyası sadece santralde beklenmedik bir kapanma olursa soğutma sistemlerinin bozulma ısısını devam ettirmekle yükümlüydü. Testi uygulamak ve hazırlanmak için gece vardiyasının zamanı çok kısıtlıydı. Vardiya değişimi sırasında güç seviyesinde % 50 den aşağı ani bir düşüş gerçekleştirildi. Alexander akimov gece vardiyası şefiydi, ve Lenoid taptunov kontrol çubuklarının hareketi dahil reaktörün operasyonel iderasinden sorumlu yöneticiydi.

Lenoid taptunov

Genç bir mühendis olan Taptunov daha önce üç aylığına bağımsız bir yüksek mühendis olarak çalışmıştı. Test planı 4 numaralı reaktörün güç çıkışının kademeli olarak 700 MW-1000MW lik ısı seviyesine düşürülmesini gerektiriyordu. Test planında yer alan 700 mw seviyesine 26 Nisan 00:05 te ulaşıldı; ancak çekirdekteki nötron soğurucu ksenon 135 elementinin doğal yapısı yüzünden daha fazla azaltma işlemi yapılmasa bile reaktör gücü azalmaya devam etti. Güç yaklaşık olarak 500MW seviyesine ulaştığı için, Taptunov kasıtsız olarak reaktörü neredeyse kapatma noktasına getiren denetim çubuklarını devreye soktu. Taptunov ve Akimov radyasyon hastalığından öldüğü için ayrıntılı ve gerçek detayların bilinmesi zor.

Reaktör gücü hemen hemen bir kapanma seviyesi olan 30 MW lik ya da daha az ısıya düştü, bu, test için güvenli olarak planlanan baştaki minimum güç seviyesinin yaklaşık olarak % 5 idi. Kontrol dairesi personeli, bunun üzerine kontrol çubuklarının büyük bölümünü yukarı çekerek gücü tekrar eski haline getirme kararı aldı. Birkaç dakika, personelin çubukları çekmesi, güç çıkışının artması ve ardından planlanan 700 MW değerinden çok daha düşük bir değer olan 160-200 MW de sabitlenmesi arasında geçti. İlk kapatma sırasındaki ani azaltma ve seviyenin 200 MW nin daha da altına düşmesi, ksenon 135 elementinin birikmesiyle reaktör çekirdeğindeki zehirlenmenin artmasına yol açtı.

Bu, reaktör gücünün yükselmesini kısıtladı ve zehirlenme etkisini yok etmek için ek denetim çubuklarının reaktör çekirdeğinden çıkarılmasını zorunlu hale getirdi. Reaktörün düşük güçte ve yüksek zehirlenme oranında çalışması, dengesiz çekirdek sıcaklığı ile soğutucu akışı ve muhtemelen dengesiz nötron akısı ile birleşti. Bu noktada çeşitli alarmlar çalmaya başladı. Kontrol odası, su/buhar tamburlarının seviyesiyle ilgili ve besleme suyunun akış hızında değişiklikler ya da farklılıklar olduğuyla ilgili art arda gelen acil durum uyarıları aldı, bunun yanında tahliye vanalarının artan buharı bir türbin kondenserine tahliye etmek için açıldığını belirten ve nötron güç denetçisinden gelen uyarılar vardı. Bu periyotta 00:35 ile 00:45 arasında, termal termal hidrolik parametrelerle ilgili görünüşte reaktör gücünü korumak için dikkate alınmadı. Reaktör acil durum koruma sistemi acil durum sinyalleri, türbin jeneratörlerinin her ikisinin kapanmasına neden olan bir hatayı tetikledi. Bir süre sonra 200 mw lik güç seviyesinde daha çok ya da daha az sabit bir duruma ulaşıldı ve test hazırlıkları devam etti.

Test planının bir parçası olarak ilave su pompaları 26 Nisan 00:05 te devreye sokuldu. Reaktör üzerinde artan soğutucu akışı oranı, reaktör çekirdeğinin hava giriş deliği soğutucusu sıcaklığının güvenlik payını azaltan ve suyun kabarcıklı kaynama sıcaklığını daha da yakınlaştıran bir artışa neden oldu. Akış saat 01:09 da izin verilen limiti aştı. Aynı zamanda, ilave su akışı tüm çekirdek sıcaklığını düşürdü ve çekirdekteki buhar boşluğunu azalttı. Ayrıca, su nötronları emdiği için ek su pompalarının devreye sokulması reaktör gücünü azalttı.

Bu, operatörlerin güç devamını sağlamak amacıyla manual kontrol çubuklarını daha ileriye çekmek için harekete geçmesine neden oldu. Tüm bu yapılanlar kararsız bir reaktör konfigürasyonu oluşmasını sağladı. İlk olarak reaktörün ani durmasında devreye sokulan, güvenlik çubuklarının değerini sınırlayabilecek kontrol çubukları hemen hemen çıkarılmak üzereydi. Dahası reaktör soğutucusu kaynamayı azaltmıştı, fakat kaynama payını sınırlamıştı, bu yüzden her güç farklılığı su tarafından emilen nötronu azaltarak kaynama üretebilirdi. Reaktör, tasarımcılar tarafından oluşturulan güvenli çalıştırma koşullarının açık bir şekilde dışında olan kararsız bir konfigürasyondaydı.


KAZANIN ETKİLERİ


İngiltere’nin Galler bölgesinde kazadan iki hafta sonra saptanan yüksek radyoaktivite nedeniyle yeşil alanlara koyun ve sığırların girişi engellenmiştir.
Araştırmalarda ilk yıl doz açısından en fazla radyoaktiviteye maruz kalan Avrupa ülkesi Bulgaristan olarak belirlenmiştir. Sıralama açısından ise şemada yer alan ülkeler doz sırasına göre şu şekilde sıralanmıştır.

Birleşmiş Milletler’e bağlı kuruluşlar olan Uluslararası Atom Enerjisi Ajansı, Uluslararası Sağlık Örgütü, Dünya Bankası gibi kurumların ve Rusya, Beyaz Rusya ve Ukrayna yetkililerinin oluşturduğu bir organizasyon olan Çernobil Forumu 2005 yılında “Chernobyl’s Legacy: Health, Environmental and Socio-Economic Impacts” (Çernobil’in Mirası: Sosyo-ekonomik, Çevresel ve Sağlık Bakımından Etkileri) başlıklı bir rapor yayınlamıştır.



Reaktör üzerine yapılan beton zırh


En yüksek radyasyon dozlarına, sayıları bini bulan acil durum çalışanları ve Çernobil personeli maruz kaldı. Çalışanların bazıları için maruz kaldıkları dozlar öldürücü oldu. Zaman içinde Çernobil’de çalışan kurtarma personelinin sayısı 600 bini buldu. Bunların bazıları, çalışmaları boyunca yüksek düzeyli radyasyona maruz kaldılar. Çöken radyoaktif iyodinden kaynaklanan çocukluk tiroid kanseri, kazanın en önemli sağlık sorunlarından birisidir. Kazadan sonraki ilk aylarda, radyoaktif iyodin düzeyi yüksek sütlerden içen çocuklar yüksek radyasyon dozları aldılar. 2002 yılına kadar bu grup içinde 4000’den fazla tiroid kanseri teşhis edildi. Bu tiroid kanserlerinin büyük bölümünün radyoiyodin alımından kaynaklanmış olması çok muhtemeldir.
Bağımsız kaynaklar yüzlerce yıl boyunca Pripyat ve komşu bölgelerde yerleşimin güvenli olmadığını söylemektedirler. Ayrıca bölgeye giriş çıkışlar hala polis kontrolünde olup bazı bölgelere giriş yapılamamaktadır.

  • 2012 yılında, Bradley Parker tarafından çekilen Chernoby Diaires(Çernobilin Sırları) adında bir sinema filmi çekilmiştir. Filmde tesadüfi bir şekilde Çernobil kazasının yaşandığı yere gezi amaçlı giden bir grup gencin başına gelen olaylar anlatılıyor. Film ile ilgili İMDB sayfasında detaylı bilgileri ve fragmanları bulabilirsiniz.
  • 2007 yılında, Ukraynalı oyun geliştiricisi GSC Game World tarafından piyasaya sürülmüş, S.T.A.L.K.E.R.: Shadow of Chernobyl adında bir video oyunu yapılmıştır. Oyunda felaketin yaşandığı bölge ve komşu kasabalar ile hayalet şehir Pripyat, birebir modellenmiş, felaketin ardından bölgede yapılan deneyler sırasında ortaya çıkan mutantlar ile savaşı konu etmektedir. Ayrıca, 2008 yılında S.T.A.L.K.E.R.: Clear Sky ve 2009 yılında S.T.A.L.K.E.R.: Call Of Pripyat oyunları ise konunun devamı niteliğinde piyasaya sürülmüştür.
  • Çernobil felaketini birebir yaşamış ve bölgeyi sürekli ziyaret eden Elena Filatova‘nın web sayfasına BURADAN ulaşabilirsiniz. Web sayfasında ayrıca Türkçe bölümü de bulunuyor ve felaketten günümüze Çernobil kasabası ve hayalet şehir Pripyat’ın birebir çekilmiş fotoğrafları bulunuyor.
  • Discovery Channel tarafından hazırlanan, birebir canlandırmalar ile güçlendirilmiş ve Türkçe dublajlı Çernobil Felaketi belgeselini alttaki videodan izleyebilir, kazanın öncesi ve sonrasında neler yaşandığını öğrenebilirsiniz.

ÇERNOBİL FACİASININ ETKİLERİ HALEN DEVAM EDİYOR !



Ukrayna’daki Çernobil nükleer santralinin patlaması üzerine yaşanan felaketten bu yana tam 43 yıl geçti. Ancak o dönemde kirlenmiş süt ve süt ürünleri tüketen çocuk ve gençler hala felaketin izlerini taşıyor.

Ulusal Kanser Enstitüsü tarafından geçtiğimiz Perşembe yayınlanan bir rapora göre bu kişilerde tiroit kanseri görülme riski diğerlerine oranla çok daha fazla.

Araştırma radyoaktif iyodun tiroit bezlerinde birikerek kansere neden olduğu şüphelerini doğrular nitelikte. Bu gibi durumlarda tiroit bezlerindeki radyoaktif maddenin birikmesini önlemek için hastalara potasyum iyodür veriliyor. Ancak o dönemde Rus hükümetinin risk altında olan herkese bu takviyeyi sağlayamadığı biliniyor.

Radyoaktif iyot etkisini 8 günde kaybediyor. Çernobil faciasında bu maddenin nükleer santral dışında Sağlık problemine neden olacak ölçülerde bulunmadığı düşünülmüştü. Ancak izotopu inekler aracılığıyla süte geçip kirliliğe neden olduğu için, süt ve süt ürünleri tüketen çocuklar risk grubuna giriyor.

Ulusal Kanser Enstitüsü tarafından yürütülen uluslar arası çaplı bir araştırma kapsamında Çernobil kazasının etkileri yıllardır gözlemleniyor. Yayınlanan raporda o dönemde 18 yaş altında olan ve kazanın çevresindeki bölgelerde yaşamış 12,500 kişinin sağlık durumları sunuluyor. Söz konusu kişilerin tiroit bezleri kazadan sonraki 2 ay içerisinde radyoaktivite testine tabi tutulmuştu.

Araştırmacıların bulgularına göre maddeye en çok maruz kalan kişilerin ileriki yıllarda kansere yakalanma riski en yüksek olarak belirlenmiş; ve araştırma dahilindeki kişilerin %65’lik kısmı 10 yıl içerisinde tiroit kanserine yakalanmıştır.


“İzmit Körfezi`nde Çernobil etkileri görülüyor”



Türkiye Bilimsel ve Teknolojik Araştırma Kurumu(TÜBİTAK) ve Kocaeli Üniversitesi`nin İzmit Körfezi`nde ortaklaşa yaptığı araştırmada, denizde gerçekleştirilen rehabilitasyon çalışmalarının yetersiz olduğunu gözler önüne serildi. Dilderesi araştırma noktasında 137Cs`nin varlığının sürekli saptanıyor olması Çernobil`in etkilerinin körfezde bulunduğunu ortaya çıkardı.

İzmit Körfezi`nde yoğun endüstrileşme etkeninin baskısının artması sonrasında denizin kirlenme yüzdesi gün geçtikçe artıyor. Körfezde yenilenme kapasitesinin son derece sınırlı oluşu nedeniyle özellikle doğu ve merkez basenleri ülkemizin en kirli bölgeleri arasında bulunuyor. Yürütücülüğünü Fen Edebiyat Fakültesi Biyoloji Bölümü Öğretim Üyelerinden Yrd. Doç. Dr. Halim Aytekin ERGÜL`ün yaptığı, TÜBİTAK ve Kocaeli Üniversitesi BAPB tarafından desteklenen proje kapsamında, 2008 Eylül`ünden bu yana çok sayıda araştırma gerçekleştirildi.

Kıyı, Çevre Mühendisliği ve Kimya Bölümü`nden Öğretim Üyelerinin de katkısıyla çok disiplinli bakış açısıyla inceleniyor. İzmit Körfezi`nin Kuzey ve Güney kıyılarında belirlenen 10 farklı istasyondan 3 aylık dönemlerde alınan deniz suyu, alg ve yumuşakça örnekleri çeşitli ağır metaller ve kimyasallar inceleniyor. İncelenen kimyasalların ortak özellikleri arasında çok düşük miktarlarıyla kanserojen etki gösterebilme, canlı dokularında birikme ve kalıcılık özellikleri yer alıyor. Körfezin farklı derinliklerdeki 80 noktadan alınan dip tortusu örneklerinde ve Dilovası`ndan elde edilen tortu örneklerinde yukarıda sıralanan organik ve inorganik 90`dan fazla kimyasalın düzeyleri ve biyojenik materyal içeriği belirlendi.

ÇERNOBİL’E GİTMEK İSTER MİSİNİZ?



Felaketin üzerinden 28 yıl geçtikten sonra Çernobil bugün farklı bir etkinlikle gündeme geldi. Nükleer felaket bölgesini görmek isteyen kişilere turistik geziler düzenleniyor.

Sadece geçtiğimiz yıl tatilini Çernobil’de geçirenlerin sayısı 7 bin 500’ü geçti. 1986 yılındaki nükleer sızıntının etkisini bölgede görmek için ise günlük 122 euroyu gözden çıkarmak gerekiyor. Şu an en son 64 Euro idi. ( 05.09.2025)


TESİSİ GEZMEK İZNE BAĞLI


Küçük bir dolmuş, turistleri felaket sonrası çitlerle çevrilmiş bölgenin giriş kapısına getiriyor. Nükleer tesisin bulunduğu bölgeye girmek hala izne bağlı. Kapıda her ziyaretçi, kurallara uyacağını belirten bir belgenin altına imza atmak zorunda. Nükleer tesisin ziyareti sırasında yemek, sigara içmek etraftaki eşyalara dokunmak, yere oturmak ya da çantasını bir yere bırakmak kesinlikle yasak.

Nükleer tesis ziyaret edildikten sonra felakette olduğu gibi terk edilmiş Pripjat kasabasını gezmeye sıra geliyor. 1986 yılında nükleer sızıntı yaşandığı gün, 50 bin kişi bu kasabayı terk etti. Pripjat kasabası 1970 yılında Çernobil’de çalışanlar için kurulmuştu. Onun için nükleer tesise uzaklığı sadece 3 kilometre. “Hayalet şehir” olarak adlandırılan Pripjat’ta trafik ve sokak lambaları sanki Sovyetler Birliği döneminde yaşandığını gösteriyor. Çocuk parkları olduğu gibi duruyor; sadece parktaki oyuncaklar paslanmış. Kapısı açık bir evde hala yerde çocuk oyuncakları ve raflarda kitaplar dizili duruyor.

Çernobil’i ziyaret eden Avustralyalı bir turist, buranın Nazi kampı Auschwitz ya da Roma’daki Kolezyum’dan hiç bir farkı olmadığını iddia ediyor. Avustralyalı turiste göre, Çernobil’de de diğer yerlerde olduğu gibi insanlar öldü veya öldürüldü.



Tura katılmak veya konu hakkında daha ayrıntılı bilgi için BURADAN (ENGLISH)

Bilmeniz gereken bir diğer konu ise radyasyon seviyeleri. New York şehrinde an itibariyle radyasyon seviyesi 0.11 usv/h iken, Pripyat kasabasında 0.92 usv/h, Red Forest kasabasında 1.80 usv/h ve felaketin yaşandığı Chernobyl Power Plant bölgesinde ise 4.50 usv/h dolaylarında.

(usv: canlı dokunun maruz kaldığı radyasyon seviyesi. eski ölçüm birimi REM’dir. 1 usv 100 REM’e eşdeğerdir. 600 REM = 6 usv/h civarı radyasyon insan vücudu için ölümcüldür.)

Ben birebir görmek istemiyorum o riski alamam ve ayrıca param yok diyorsanız, yandex haritalarından bölgeyi sokak sokak gezebilirsiniz. Mevzubahis haritalara BURADAN ulaşabilirsiniz.

ÇERNOBİL FACİASININ KRONOLOJİSİ



26 Nisan 1986’da henüz gün ağarmadan, o dönemde nüfusu 50 bini bulan Pripyat’ın 3 kilometre kadar güneyindeki Çernobil Nükleer Santralı’nın dört numaralı reaktöründe patlama oldu. Bu patlamada 2 kişi yaşamını yitirdi. Radyasyon zehirlenmesinden 28 kişi daha yaşamını yitirecek ve kısa süre içinde ölü sayısı 30’a yükselecekti. Binanın hurdaya dönen iskeleti on gün boyunca yandı ve kuzey Ukrayna’da, güney Belarus’ta ve Rusya’nın Bryansk bölgesinde 142.000 kilometre karelik bir alana radyasyon yaydı. Bu, dünyanın yaşadığı en korkunç nükleer kazaydı.

Hiroşima’da yayılan radyoaktivitenin 400 kat fazlasına ulaşan radyoaktif serpinti, yaklaşık 300 bin kişinin evlerini terk etmesine neden olurken çocukları etkisi altına alan bir tiroit kanseri salgınını da tetikledi. Ve izleyen yıllarda sağlık ve temizlik giderleri, tazminatlar, üretkenliğin azalması gibi ekonomik kayıplar yüz milyarlarca dolara ulaştı.

Dört numaralı reaktörün radyoaktivitesi son derece yüksek kalıntıları, kazadan sonra hızla inşa edilen -ve lahit olarak adlandırılan- mezarın altında için için yanmaya devam ediyor. Beton ve çelikten yapılan ancak aradan geçen yıllarla giderek çürüyen bu yapı artık her an çökme tehlikesiyle karşı karşıya ve bir diğeriyle değiştirme çalışmaları da başlamak üzere: Lahdin üzerine geçip tümüyle kaplayacak, stadyum büyüklüğünde, kemerli bir yapı inşa edilecek. İnşa tamamlandığında, harap olmuş reaktör göz önünden kalkacak olsa da bölgede yaşayanların akıllarından hiçbir zaman çıkmayacak. Çünkü felaket yavaş çekimde de olsa devam ediyor.

26 Nisan 1986
23:00 Çernobil Nükleer Santralı’ndaki 4 numaralı ünitede soğutma sistemi denenmeye başladı.
23:40 Acil durumda santralı kapatacak sistem çalışmadı.
23:44 Reaktör kontrolden çıktı ve patladı.
26 Nisan-4 Mayıs 1986 : Reaktörün içindeki radyasyonun büyük bölümü ilk 10 gün içerisinde doğaya karıştı.
27 Nisan – 5 Mayıs 1986 : 1800 adet helikopter, 5 bin ton kurşun ve kumu reaktördeki yangını söndürmek için kullandı.
27 Nisan 1986 : Çernobil reaktörüne 3 kilometre uzaklıktaki Pripyat Kasabası’nda yaşayan 16 bini çocuk 45 bin kişi tahliye edildi.
28 Nisan 1986 : Sovyetler Birliği Haber Ajansı TASS, kazayı ve kayıplar olduğunu ilk kez dünyaya duyurdu.
27 Nisan – 5 Mayıs 1986 : Reaktör çevresinde 30 kilometre mesafedeki 130 bin kişi daha tahliye edildi.
1989 : İkinci tahliye dönemi başladı. Belarus, Ukrayna ve Rusya’da 100 bin insan daha köylerini terk etmek zorunda kaldı.
11 Kasım 1996 : Rusya, Belarus ve Ukrayna’da tiroid kanseri vakaları 1980’lere göre yüzde 200 arttı.
5 Temmuz 2000 : Diğer ülkeler tarafından Ukrayna’ya reaktörün üzerini kaplayacak ikinci bir koruma duvarı için 715 milyon dolar verildi.
3 Ağustos 2005 : Ukrayna’ya toplam yardım miktarı 1 milyar 91 milyon dolara ulaştı.
30 Ağustos 2005 : Kazadan 19 yıl sonra radyoaktif kirlenmede azalma tespit edildi. Ukrayna hükümeti 2800 kilometre karelik bir alanı yeniden yerleşime açtı.
26 Nisan 2007 : Hâlâ santrali çevreleyen 30 kilometrekarelik alana girmek yasak. Ancak yaklaşık 400 kişinin halen burada yaşamasına göz yumuluyor.

TÜRKİYE’DEKİ ÇERNOBİL

30 Nisan 1986 : Türkiye’nin Karadeniz kıyılarında ve Trakya’da radyasyon düzeylerinde yükselme görüldü.
1-4 Mayıs 1986 : Türkiye Atom Enerjisi Kurumu da (TAEK) sütteki radyasyonun Avrupa’da belirlenen sınır değerlerden yüksek olduğunu belirledi.
2 Mayıs 1986 ve Sonrası : Başta Doğu Karadeniz olmak üzere radyokatifbulutlar tüm ülkede etkili oldu. TAEK en yüksek dozun Batı Karadeniz kıyısındaki Karasu’da bulunduğunu açıkladı.
29 Mayıs 1986 : TRGK’nin ilk toplantısında TAEK Başkanı Prof. Ahmed Yüksel Özemre, “Türkiye’de radyasyon doğal düzeydedir” dedi.
1994 : Çernobil kazasından sekiz yıl sonra “Türkiye’nin Karadeniz Kıyılarında Çernobil Radyoakivitesi” adlı raporu hazırlayan ODTÜ Kimya Bölümü’nden İnci G. Gökmen, M. Akgöz ve Ali Gökmen, son yaptıkları ölçümlerde sezyum aktivitesini, 1986’da TAEK tarafından yapılan ölçümlere göre daha yüksek bulduklarını açıkladı.
1-2 Mayıs 2004 : Önce Prof. Dr. Ahmed Yüksel Özemre, sonra Çay-Kur eski Genel Müdürü Tuncer Ergüven radyasyonlu çayların “bir bölümünün” yakıldığını açıkladı. Ergüven özel sektöre ait fabrikalardaki radyasyonlu çayların büyük bölümünün piyasaya sürüldüğünü de belirtti.
5 Eylül 2005 : TAEK, nükleer santral inşasının gündeme gelmesiyle yeniden alevlenen Çernobil tartışmaları üzerine bir basın açıklaması yaptı ve 1986’da Türkiye’de “ekonomik ve sosyal faktörleri dikkate alarak mümkün olan en düşük dozun alınmasının sağlandığı” öne sürüldü.
12 Nisan 2006 : Türkiye Tabipler Birliği, Hopa’da yaptığı araştırmada ilçede son üç yılda meydana gelen ölümlerin yüzde 47,9’unun kanser yüzünden olduğunu açıkladı.

Visited 4 times, 1 visit(s) today

Bir yanıt yazın

E-posta adresiniz yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir